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Abstract

We describe a system for freehand entry and editing of mathematical expressions using a pen and

tablet. The expressions are entered in the same way that they would be written on paper. The system

interprets the results and generates output in a form suitable for use in other applications, such as word

processors or symbolic manipulators. Interpretation includes character segmentation, character recogni-

tion, and formula parsing. Our interface incorporates easy to use tools for correcting interpretation errors

at any stage. The use can also edit the handwritten representation and ask the system to reinterpret the

results.

By recovering the formula’s structure directly from its hand-written form, the user is free to use

common conventions of mathematical notation without regard to internal representation. We report the

results of a small user study, which indicate that the new style of interaction is effective.

1 Introduction

Mathematics has a concise system of notation that has evolved over hundreds of years; it is a universally

accepted language for communicating fundamental concepts such as sets, relationships, and function

composition.
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Unlike most written text, mathematical notation makes extensive use of two-dimensional structure.

Information is conveyed through the relative positions of symbols; for example, subscripts and super-

scripts commonly denote some type of correspondence or function application, and stacking is used to

denote division.

The two dimensional nature of mathematical notation complicates entry and editing on a computer,

since most computer interfaces are optimised to accommodate the linear text of natural language. Al-

though all mathematical expressions can be represented in a linear form (Martin, 1965), such notations

are difficult to understand and use. As an example, consider the following set of commands in the

LATEX (Lamport, 1994) typesetting language:

f(a) = \frac{1}{2\pi i} \intˆ{2\pi}_{0}{

\frac{f(eˆ{i\theta})}{Tˆ{-1}(eˆ{i\theta})} \frac{d}{d\theta}

\left( Tˆ{-1}(eˆ{i\theta}) \right) d\theta}

This representation requires at least a few seconds to understand, even for an expert in the language. On

the other hand, the conventional two-dimensional notation,

f(a) =
1

2πi

Z 2π

0

f(eiθ)

T−1(eiθ)

d

dθ

�
T−1(eiθ)

�
dθ

has a structure that is immediately apparent. This disparity between the linear and two-dimensional

representations is even greater when one attempts to alter an existing formula. To change the order of

the factors, or to move an expression from the numerator to the denominator in the linearised expression

above, one would have to cope with syntactic rules that do not hamper the more natural two-dimensional

form.

With the proliferation of pointing devices such as mice, pens and tablets, graphical formula entry

systems have become available. Typically, the user chooses from a set of icons that represent basic

mathematical substructures. These templates usually contain boxes that are later filled in with symbols

or other templates (Microsoft, 1993; Wolfram, 1996). While these systems are a step towards the goal

of editing formulae in their native two dimensional form, they are still somewhat unnatural as they must

be constructed in a strictly top-down manner, which requires planning ahead. In essence, the user must

know how to “parse” the expression before they can enter it. Editing an equation that is already in the

system can be even more troublesome. Often re-entry from scratch is the quicker strategy.

We present a new equation editing system that offers far more natural entry and editing of mathemat-

ical notation than existing systems. It allows the freehand entry and editing of formulae using a pen and

tablet. Automatic handwritten formula recognition is then used to generate a LATEX command string for

the formula.

The system consists of a number of loosely coupled modules:

• A symbol recogniserthat accepts a set of input strokes representing a single character and returns

a list of characters that the strokes may represent, along with a confidence level for each interpre-

tation.

• A stroke grouperthat segments a set of input strokes into individual characters.
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• A formula processorthat takes the list of symbols and their two dimensional positions, and returns

the formula they represent.

• A user interfacethat provides transparent interaction with the handwriting recogniser and formula

processor. The user interface provides for the easy entry and manipulation of formulae, along with

the means to correct any errors made by the other components in the system.

The symbol recogniser and the formula processor are based on previously published techniques (Avitzur,

1992; Lavirotte and Pottier, 1997). The stroke grouper and the user interface, as well as the synthesis of

the these modules are the main research contributions of this paper. The user interface includes easy-to-

learn tools that enable the user to correct the inevitable mistakes made by the character recogniser and

automatic stroke grouping process.

We also report on a small user study that we carried out on the system. We found that a pen-based

formula entry system is easier and more comfortable to use than existing formula entry systems, both

for the initial entry and subsequent editing of formulae. Clear feedback to the user and simple gestures

for correcting stroke grouping and character recognition errors have proven to be essential in making the

system easy to use.

2 Previous Work

This section discusses existing user interfaces for entering and editing formulae. For further detail, the

reader is referred to the recent review paper by Kajler and Soiffer (1998), which gives a good overview

of the techniques and considerations involved in making interfaces for computer algebra systems.

2.1 Command Line Interfaces

Perhaps the most basic interface for creating and editing mathematical expressions is through the use of

a linear, text-based description language. Such a system can be built using traditional tools for text entry

and processing.

Text-based description languages are powerful enough to capture all the nuances of mathematical

notation, and allow for flawless and efficient automatic interpretation. Although the learning curve can be

quite steep, once a user is familiar with a system’s commands, entry can be quite fast, since a reasonably

experienced typist is able to type faster than they can write (Brown, 1988).

The need for extensive use of parenthesis or other matching braces is common to all text-based

mathematical description languages. In many cases, the braces preserve hierarchical information that

would otherwise be lost when the notation is “flattened” from two dimensions. If one is converting a

formula in standard notation to a text-based form, one must perform a mental parse in order to decide

how to nest the commands. The difficulty is greater when one attempts to manipulate a text-based

description of an expression rather than merely understand or enter it. These problems often make text-

based description languages cumbersome to use, even for experts.
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2.2 Template-based Editors

For systems that include a graphical user interface, by far the most popular type of equation editor is

a template-based system (van Egmond, Heeman and van Vliet, 1989; Microsoft, 1993; Wolfram, 1996;

Hayden and Lamagna, 1998). Basic operations, such as addition and subtraction can be entered from

the keyboard by pressing the appropriate key. For operations that are not on the keyboard or that are

two-dimensional in nature, such as exponentiation, integration, square-root, summation and fractions,

the user selects the icon that graphically depicts that operation from a toolbar or menu. The operator then

appears on the screen with empty boxes in place of the operands. The operands may then be filled in by

selecting the appropriate boxes. The process can continue recursively so that the operand of a complex

operator may be another complex operator.

Template-based equation editors have an advantage over command line interfaces in that the display

of the formula is always in standard mathematical notation. However, the user is still forced to men-

tally parse the desired expression before entry, since templates typically must be applied in a top-down

manner. As with command line systems, making major structural changes to a formula can be extremely

difficult. Furthermore, hunting for special symbols and structure templates across numerous toolbars can

be tedious.

2.3 Handwriting-based systems

Since virtually all mathematicians are comfortable with writing equations on paper with a pen or pencil,

a pen-based handwriting recognition system seems to be a natural choice for an equation editing system.

With the exception of Littin’s work (Littin, 1995), no complete equation editing systems that are purely

handwriting-based have been presented in the literature. Despite this, many of the underlying technolo-

gies have been developed. In this section we review previous work on formula parsing and describe the

handwriting-based online equation entry system developed by Littin.

2.3.1 Formula Parsers

The goal of a formula parser is to take as input a set of recognised symbols, and return a description of

the formula that they represent. Blostein and Grbavec (1996) give a good overview of the categories of

existing techniques for parsing mathematical formulae.

One technique is to modify an existing one dimensional parser so that it incorporates checks of the

geometric relationships between symbols. This technique can only be easily applied to online input if

time is used as the dimension that orders the symbols for parsing. One major advantage of this style of

parsing is efficiency, which usually comes at the cost of a restricted entry order.

Another approach to formula parsing is to use a box language. These languages divide the two

dimensional input plane into areas based on the current symbol. The use of box grammars is a common

approach, from the early formula parsers (Martin, 1967; Anderson, 1968) to systems currently under

development (Fateman, Tokuyasu, Berman and Mitchell, 1996; Zhao, Sakurai, Sugiura and Torii, 1996).

A similar, though more flexible approach to parsing is to use a graph rewriting parser. The application
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of this technique to parsing mathematical expressions is discussed by Blostein and Grbavec (1996) and

used by Lavirotte and Pottier (1995; 1997; 1998) and Kosmala, Rigoll, Lavirotte and Pottier (1999).

Blostein and Grbavec note that graph rewriting can be made tolerant of the irregularities of handwritten

input, which makes it useful for our purposes.

Graph rewriting parsers may be very inefficient, as the application of rules in the wrong order will

lead to backtracking. Lavirotte and Pottier (1998) optimise the graph reduction process by adding con-

textual information to the rules in the graph grammar that avoid ambiguities where two or more rules can

be applied in a given situation. These rules are created semi-automatically, using information such as

operator precedence information supplied by the person who builds the grammar. Further details about

graph rewriting parsers will be given in Section 4.

Another approach is stochastic parsing, which can be added to any type of grammar. Two examples of

systems that use this type of approach for parsing mathematical formulae are Chou’s (1989), and Miller

and Viola’s (1998). A stochastic grammar has associated with every production a probability that the

production is used. Thus, for any given sequence of productions in a given parse, the overall probability

of this sequence can be calculated. The correct parsing of a set of symbols is the parsing that has the

highest probability.

2.3.2 Complete Handwriting-Based Formula Entry Systems

A system described by Littin (1995), combines modules for both character recognition and formula

parsing, resulting in a complete handwriting-based system for formula entry. With his system, the user

writes a formula using a mouse or pen and tablet. Characters are recognised as they are drawn, using a

feature-based character recogniser. Because the underlying grammar is unambiguous, the formula can

be parsed as the user writes.

Littin uses a modified SLR(1) parser, which specifies the order in which symbols must be entered.

Editing is also limited to the modification or deletion of the most recently entered symbol. Consequently,

the result is a formula entrysystem, rather than a formula editingsystem. Our goal was to create a system

that was more flexible, and had no such limitation.

3 Character Recognition and Stroke Segmentation

This section describes the first of the automatic interpretation stages in our system. The raw input stream

from the pen and tablet is converted into a set of recognised symbols with associated rectangular bound-

ing boxes. This information is passed on to a higher-level formula processing module, which we describe

in Section 4.

At this stage in the processing, speed is an important consideration, since the system must keep up

with the user’s writing. Our method is based on two separate modules. The first is a character recogniser

that returns the most likely interpretations of a collection of strokes as a single character. The second

module groups pen strokes into characters. This is a new algorithm that uses the character recogniser to

assist in the process.
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3.1 The Character Recogniser

For character recognition, we employ an extremely fast user-trained on-line recognition algorithm based

on nearest-neighbor classification in a feature space of approximately 50 dimensions. Similar feature-

based strategies are used by Rubine (1991) and Avitzur (1992).

Points in the feature space represent prototypical characters, which are typically generated from ten

to twenty user-supplied handwriting samples. The weight of each feature is symbol-dependent, and is

determined by the feature variability within the samples for that symbol. Each feature that we employ can

be viewed as a scale-invariant functional applied to symbols, which are represented by sets of polylines.

Many of these functionals are implemented as polynomials of normalised vertex positions or normalised

arc length along the strokes. Others are computed using histograms of point locations, histograms of

angles between adjoining segments, ratios of stroke lengths to bounding box perimeter, ratios of inter-

stroke gaps to stroke length, and relative positioning of strokes.

Several factors allow this relatively simple approach to achieve comfortably high recognition rates in

the context of equation editing. First, since the recognition task is confined to printed symbols, which

typically consist of three or fewer strokes, the number of patterns that must be distinguished is relatively

small; on the order of several hundred. Second, since all user input is acquired on-line, segmentation of

user input into distinct strokes is immediate, since all strokes, even those that cross, are well separated

temporally. Thus, timing information eliminates one of the most troublesome phases of handwritten

character recognition. Finally, as we describe in Section 5, the system supports several mechanisms for

correcting recognition errors, which makes the errors that do occur less burdensome.

Strategies for attaining higher recognition rates include the use of more versatile classifiers, such as

neural nets (Yaeger, Webb and Lyon, 1996), and, perhaps even more importantly, the use of context,

as described by Miller and Viola (Miller and Viola, 1998). Virtually any recognition module could

be incorporated into our system. The only fundamental requirements imposed by the system on the

recognition module is that it must be capable of ranking thek most likely candidates for a sequence of

strokes by a numerical measure of confidence, and that the confidence measures of different patterns must

be directly comparable. The latter constraint arises from the stroke grouping algorithm, which compares

the confidence measures of many possible groupings.

3.2 Stroke Grouping

Since the character recogniser works on a symbol by symbol basis, the stream of strokes provided by

the user drawing with the pen on the tablet must be divided up into separate symbols. Our method is

progressive and automatic and does not interfere with the user’s natural rate of data entry.

Using the confidence information supplied by the recogniser, it is possible to automatically test dif-

ferent combinations of strokes and pick the best. A similar combinatorial technique is used by Yeager

et al. (1996), however their method recognises characters at the word level and as such is more suited

to recognising handwritten text. Our simple progressive segmentation algorithm works at the individual

symbol level.
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The system assumes that all of the strokes that belong to a symbol will be drawn before the user

moves onto the next. In other words, alli’s must be dotted and allt’s crossed before the next symbol is

drawn.

Let m be the maximum number of strokes in a symbol. This number can easily be determined by

analysing the training data used by the character recogniser. The system works in a progressive fashion,

finding the first symbol among the firstm strokes written by the user, removing those strokes from

consideration, and then restarting the process.

Finding the first symbol from among the firstm strokes proceeds by generating all possible groupings

of the firstm strokes into symbols and sending these groupings to the recogniser. While generating the

groupings, we must consider the possibility that the lastl < m strokes constitute a partially-formed

character and cannot be evaluated by the recogniser. We therefore also consider groupings of only the

first m− l strokes into characters.

The confidence level of a group is that of the lowestconfidence symbol in the group. This heuristic

is common in expert systems applications (Turban, 1992). Once the highest confidence group is chosen,

the first symbol in the group is stripped off and returned as a recognised character. The strokes for the

remaining symbols in the group are put back into the grouping queue and will be segmented oncem

strokes are in the queue.

Although this algorithm has exponential complexity,m is small and the character recogniser is very

fast. Consequently, the grouping is not an excessive burden to the system. In our training data,m = 4.

The16 groupings can be evaluated in at most0.18 seconds on a 180MHz Intel Pentium Pro machine.

Recognition can easily keep up with a user’s writing.

The grouping system has a slight bias toward single-stroke characters over multi-stroke characters.

For example, when drawing an “=”, the individual strokes are each likely to have high individual con-

fidences of being a “-”, overpowering the interpretation of the pair of them as an “=”. To rectify these

errors, consideration of local context is necessary (Miller and Viola, 1998). This is an important avenue

for future research. In the meantime, we use a simple heuristic that drastically reduces the number of

such errors: we assume that any strokes that cross are associated with the same character. However, if a

user is writing sloppily and overlaps strokes from adjacent characters, a grouping failure will occur, and

will require manual correction using the techniques in Section 5.

4 The Formula Processor

We now describe the internal workings of the formula parser, which is based on the graph rewriting

processor described by Lavirotte and Pottier (1997). Full details of our implementation may be found in

the thesis by Smithies (1999). Here we give an overview of the three main stages in the parsing process:

building the initial graph, lexical analysis, and the main parsing loop.
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4.1 Building the Initial Graph

The input to the formula processor is a set of tuples, one for each symbol in the formula. These tu-

ples contain the identity of the symbol, a rectangular bounding box that encloses all the “ink” in the

handwritten symbol, and a unique tuple ID.

(a) Initial graph. (b) Initial graph with arcs built.

(c) After lexical analysis. (d) After applying the “superscript” rule.

(e) After applying the “fraction” rule. (f) The final graph, after applying the “integral”

rule.

Figure 1: The preprocessing and parsing of a simple formula.

The first step in the processing is to build a graph connecting the tuples. Later, directed labeled arcs
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in the graph will encode the important spatial relationships between these tuples. Figure 1(a) shows the

initial nodes of a graph, represented as rectangles.

The nodes in the graph are then linked by arcs. The first step in doing this is to determine the spatial

relationships between each pair of nodes. In testing whether two nodesA andB have spatial relationship

x, the centre point ofA’s bounding box is tested against a set of rectangular regions defined relative to

the dimensions ofB’s bounding box. There are nine regions, including an “inside” region. Neighbour-

ing regions, for example the “top-right” and “right” overlap. This helps account for the variability in

positioning that results from handwritten input.

Potential arcs are not built between two nodes if any other bounding regions are crossed by a line

running between the centre points of the symbols or subexpressions being linked. In figure 2, no link is

built between the2 and the4 because the+’s bounding box is on the line between the centres of the2

and4. A similar approach was independently developed by Miller and Viola (1998).

RL

Not Linked

Figure 2: While building the graph representing a formula, no arc is built between symbols that have other

symbols between them.

Potential arcs are also subjected to a test to determine if the arc could be used in any of the rules in

the grammar. The elimination of these arcs results in a small reduction in processing and memory cost,

however the main benefit is cosmetic: it makes the graph structure more interpretable by humans. The

resulting graph can be seen in figure 1(b).

This process for building the initial graph works well, though it is possibly too liberal in the arc

building, resulting in a large number of unnecessary links in the graph. There is a trade off between the

cost of having too many arcs in the graph and the benefit of being able to parse sloppily written input.

Since ours is a handwriting-based system, we chose to err on the side of generality.

4.2 Lexical Analysis

The next step is lexical analysis. There are two types of lexical analysis rules. One type classifies an

individual symbol into its correct lexical type, for example anx is classed as a letter of the alphabet.

The second type of rule groups symbols that will form a single unit during parsing. Multi-digit numbers
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are merged into a single node of type “number” and strings of characters are merged into nodes of type

“word”.

We use a distinct preprocessing grammar to handle this, similar to the one proposed by Ander-

son (1968). Our preprocessing grammar contains 45 rules, the vast majority of which are used to identify

individual letters and digits. The result of applying all the rules in the preprocessing grammar to the

graph in figure 1(b) is shown in figure 1(c). As a result, the “dx” has been recognised as a single token

and collapsed into a single node. The variables and constants have been recognised as such and also

classed as “elements” for later processing.

4.3 Main Parsing Phase

The main parsing phase is handled by a bottom-up backtracking parser. Our main graph grammar con-

tains approximately 20 rules, which cover basic algebra and calculus. Each rule specifies how to collapse

one or more subgraphs. At each step, one of the rules in the grammar that could apply to the current

graph is chosen and fired. The process proceeds until the entire graph is collapsed to a single “formula”

node, or the parser reaches a dead end. If the parser reaches a dead end, it backtracks by undoing rules

until a different applicable rule can be fired.

Bottom-Right

Top-Right

Right

A

B

Element

D

Element

C

Element

E

DIFF
Right

Integral

\int^{B}_{C}DE

Element

Figure 3: Our graph grammar’s rule for an integral with limits.

The trigger for a rule in the grammar is a graph that specifies particular node types with particular

spatial relationships. An example of such a graph is seen on the left-hand side of figure 3. If any subgraph

of the formula graph matches a rule’s trigger graph, that graph is applicable.

To find ann-node rule graph in ag-node formula graph, alln node sub-graphs of the graph are

generated, testing to see if any match the rule graph. The number ofn node sub-graphs of ag node graph

is Cn
g = n!

(n−g)!g!
. This search is repeated for every rule in the grammar. The complexity of the search is

exponential in the size of the formula. This is by far the most expensive step in the parsing process.

At any one time, many rules in the grammar may apply to the current graph. We have chosen a very
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simple approach to deal with the ambiguity. Each rule in the grammar has a priority assigned to it by the

grammar designer (Pottier, 1995).

Each rule in the grammar has a right-hand side that defines what action is taken on the subgraph

that matches the trigger. Usually, the subgraph is replaced with another (smaller) subgraph. The rules

also define how the types and symbols in the replacement subgraph are set, with respect to the types

and symbols in the original graph. One of these rules is depicted graphically in figure 3. As the parsing

progresses, a LATEX representation of the formula is built up in the data fields of the nodes, as shown

in figure 1(d), (e) and (f). After a rule is fired, the bounding boxes of any collapsed nodes must be

recomputed, along with the arcs between them.

Our system does a provisional “pre-fire” of a rule, the result of which is examined before the system

commits to applying the rule. At this stage, a rule is rejected if its application would mean that other nodes

would end up inside the bounding box of the nodes created as a result of the production. This “nothing

inside” test is useful because it allows us to reject rules that would obviously have led to a backtrack.

This approach was independently developed by Miller and Viola (1998), who use convex hulls rather

than rectangular bounding boxes. An example of the “nothing inside” test is shown in figure 4.

Figure 4: The “nothing inside” test. If a grammar rule collapsed the2
4 to a single node, the centre point

of the3 would end up inside its new bounding region. Because of this, the application of the rule is not

permitted.

As parsing progresses, any applicable rules that were not chosen are tracked using a priority queue.

Highest priority is given to the rule that would cause the largest reduction in the size of the graph. Ties

are broken by considering the depth of the node in the parse tree; deeper nodes are considered higher

priority than shallower ones. When backtracking, the highest priority alternative is chosen first. Parsing

terminates when the entire graph is reduced to a single “Formula Node”.

Overall, our graph rewriting parser is able to process formulae well, and adding and removing rules

to the grammar for different mathematical constructs is simple. However, there are a number of obvious

drawbacks to its use in a pen-based mathematics system:

• The parser can not interpret incomplete formulae, making it unable to provide progressive analysis

and feedback as the user writes.

• The parser can only handle a single formula, and thus cannot be applied to a page full of different

equations that the user is working with simultaneously.
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• The parser will arbitrarily decide between alternatives in genuinely ambiguous input, with no ref-

erence to contextual cues. It gives no feedback about possible sources of confusion.

5 The Interface

This section describes the user interface that we built to incorporate the recognition elements from Sec-

tions 3 and 4 into a working prototype of a handwriting-based equation editor.

A major design principle of our system is that automatic interpretation errors should be easy for the

user to correct. Although the state of the art in automatic interpretation is likely to steadily improve,

occasional errors are inevitable. Our system attempts to annotate the user’s input unobtrusively, and

offers simple gesture-based correction of some recognition errors.

Figure 5: The user interface, showing the strokes the user has drawn, the characters they were recognised

as, and the LATEX preview window with the computer’s interpretation of the formula.

Figure 5 shows a screen capture of the system in action. The interface consists of a menu and button

bar, a large drawing area, and a LATEX preview window. The system has five basic modes of operation,

which are selected from the button bar.
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5.1 Draw Mode

Upon startup, the program is in “draw mode”. In this mode, the user can draw freely in the drawing

area. As the user writes, the system automatically interprets the pen strokes, using the modules described

earlier. As symbols are recognised, feedback is given to the user in the form of a lightly shaded bounding

box around each group of the user’s strokes that have been recognised as a symbol. At the top left of the

box, the system’s interpretation of the symbol is printed.

The symbol recognition process runs as a separate thread of execution. The system requires a four

stroke delay before grouping and recognition can take place. Since online annotations can be very dis-

tracting if they appear very close to the point where the user is currently writing, the system waits until

there are eight strokes in the queue before passing data to the recogniser. This ensures that the annotations

lag at least one character behind the user’s pen.

After a user-definable period of inactivity, the system assumes that input is complete. Therefore all

remaining strokes are interpreted. This effect can also be achieved with a simple “tap” gesture on the

tablet.

Figure 6: The drawing area as a user begins to enter a formula. The first three characters have been

recognised, and the remaining two are still waiting to be recognised.

Figure 6 shows a screen capture of the drawing area of the program as a user is beginning to enter

a formula. The first three symbols have been recognised by the system and their bounding boxes are

marked and annotated with the system’s current interpretation. As a character is recognised, the colour

of its strokes are changed to indicate that the recognition has taken place.

5.2 Modify Stroke Groups Mode

The automatic grouping will occasionally be in error. There are only two possible kinds of misgroupings:
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• Strokes that should be recognised as a single character are grouped as parts of separate characters,

or

• strokes that should be recognised as part of separate characters are grouped into a common char-

acter.

The user can correct both of these types of errors by entering modify stroke groupsmode. In this

mode, drawing with the pen will temporarily mark out a line. Upon finishing the line, any strokes that

were touched by that line are forced into a group of their own, possibly causing a regrouping of other

strokes. The temporary line then disappears, and the system automatically reruns the character recogniser

on all affected groups. SGI Inperson (SGI, 1999) uses the same technique for selecting objects in a multi-

user collaborative white-board application. The squiggle select technique is easy for users to learn and

easy for programmers to implement.

Figure 7 shows the modify stroke groupsmode being used to correct the two types of grouping errors.

Figure 7(a) shows the initial state, in which the strokes in the “=”, the “4” and the “2” are incorrectly

grouped.

5.3 Modify Characters Mode

In most cases, if the stroke grouping process succeeds, the character recognition process also succeeds.

However, no matter how good the underlying character recogniser is, errors in the recognition of sym-

bols will occasionally occur. The modify charactersmode allows the user to click on a misrecognised

symbol’s shaded bounding box and select from a pop up menu the correct interpretation for that symbol.

The pop-up menu contains the five most likely interpretations of the strokes in the bounding box.

Should the correct interpretation not appear on this menu, the user may choose enterfrom the pop-

up menu and type the correct character from the keyboard in an entry window. Figure 8 shows a user

correcting a misrecognised character in modify charactersmode.

5.4 Generate LATEX

At any point, the user is able to invoke the graph-rewriting formula parser by pressing the “Generate

LaTeX” button. The system takes all the symbols on the current canvas and passes them to the formula

parser described in Section 4 for interpretation.

If the symbols are parsed successfully, a window appears showing a typeset version of the formula

and its equivalent in LATEX’s mathematics description language. This window can be seen in figure 5. The

LATEX command string at the top of the window is in a text entry area and can be copied and pasted into

the user’s LATEX document. The user is also able to edit this command string and press the redo preview

button. If the formula can’t be parsed, the display shows the best reduction that the parser was able to

achieve.
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(a) Initial grouping.

(b) The user indicates that two strokes should be grouped together.

(c) The system displays the regrouped and re-recognised characters.

(d) The user indicates that two strokes should form their own group.

(e) The final result.

Figure 7: The user correcting misgrouped strokes. The two strokes of the= should have been grouped

together, and the4 shoud be separate from the2.
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Figure 8: The user selecting a correct interpretation of a misrecognised character.

5.5 Select and Move Mode

The interface also provides basic editing operations on groups of strokes, such as selection, moving and

deleting. These operations are accessed by entering select and movemode.

Select and move mode is primarily used for editing formulae. For example, if the user wants a

subexpression to become the numerator of a fraction, but hasn’t left enough room at the bottom of the

canvas, the expression can be selected and moved up. Then the fraction bar and the denominator can

be drawn in. At any time, the “Generate LATEX” button can be pressed to process the current recognised

symbols.

Select and move mode is also useful for adjusting the layout of the symbols to help the graph rewriting

parser. This is important, since ambiguous symbol placement is the primary cause of parsing errors.

The user interface also allows for the loading, saving and printing of formulae, as well as multi-level

undo and redo.

6 Evaluation of the System

We have conducted a pilot user study to gauge the reaction of users to pen-based formula entry systems

in general, and to our user interface in particular. We chose eight participants, all but two of whom

were completely unfamiliar with the system. Their backgrounds reflected the diversity of end-users that

we envision for such a system: two high school students, two undergraduate computer scientists, one

postgraduate computer scientist, two postgraduate physicists, and one postgraduate mathematician.

All participants were given a short demonstration of the system, and then were trained in the use of

the system by entering four sample formulae under the guidance of an expert. When the users felt that

they were ready, or had worked through all of the formulae, they moved onto the main testing phase.
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During the main testing phase, participants were given a set of five formulae to enter, in order of

increasing complexity. The five formulae that were used are shown below. These are representative of

formulae that our formula processor can handle.

(1) x2 + 4

(2)

Z
x2 + 4dx

(3)

Z 2

0

x2 + 4

4
dx

(4)

9X
z=0

z3 + 4z + 2

(5)

Z 8

3

(2x + 4x)

−√z
dx = 8

Participants were observed by an expert, who was available to offer advice if the user got stuck. The main

testing phase was videotaped by a camera pointed at the computer monitor. This proved to be useful for

timing and error rate analysis.

At the conclusion of each testing session, the participants were asked to respond to both oral and

written questions about the system. The written questionnaire was anonymous. The two questionnaires

gathered basic information to gauge the user’s experience with computers and formula-entry systems. It

then sought to ascertain the user’s overall opinion of our system, and how they found it in comparison to

other systems that they may have already used. To obtain comparative timing results, the same formulae

were entered into Microsoft’s Equation editor and LATEX by users experienced with both systems. Further

details about the user study and its results are available elsewhere (Smithies, 1999). We summarise the

main findings below.

6.1 Participants’ Impressions

All participants in the study found the interface easy to learn and to use, even those with no previous

experience with pen and tablet entry. They found the system to be effective for entering expressions.

The technique of using the squiggle select to combine a group of strokes into a single character was

easily learnt and understood. After being shown the technique once, all the users employed it without

difficulty. The pop-up menu listing the top alternatives to misrecognised characters worked well.

Users did complain that the pop-up menu often did not include the intended character, forcing them

to manually enter it from the keyboard. For example, the top alternatives to a lower-caseb often include

4, h, y, and7. Of these, only theh seems “reasonable”. Clearly, distance in the current character

recogniser’s feature space is not a good indicator of perceptual similarity.

The results showed that the liberal interpretations of geometric relationships in our graph rewriting

parser had both benefits and costs. On the positive side, it did allow for the variation of symbol sizes and

positions inherent in handwritten expressions. On the other hand, it also resulted in initial graphs that had
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many possible interpretations. The most frustrating problem, from the participants’ point of view, was

that the system spent a lot of time trying to complete parsing after applying an incorrect rule early on.

The system would often find the correct interpretation, but only after several minutes of backtracking.

If the formula did not parse correctly, the participant needed to “debug” their input by adjusting

spatial relationships in “select and move” mode and try parsing again. Novice users often got stuck in

this stage.

6.2 Statistical Summary

The time taken to enter, edit, parse and preview the five expressions ranged from 291 to 503 seconds,

with an average of 405 seconds. Independently, an expert user who was familiar with the system was

able to enter, parse and preview the same formulae in 154 seconds. The novices’ average times are much

higher than those of the expert, primarily due to low character recognition rates, the use of tightly spaced

symbols that confused the parser, and unfamiliarity with using a pen and tablet.

Drawing
29%

Correcting Grouping
8%

Correcting Recognition
13%

Correcting Positions
10%

Parsing of formulae
40%

Figure 9: Proportion of time spent by the participants in each phase of entering and correcting formulae.

The proportion of time that participants spent performing the different phases of the process is sum-

marised in figure 9. One disturbing feature of the chart is that 40% of the process was spent waiting for

either parsing or preview generation. We believe that this fraction can be brought down considerably.

Kosmala, Rigoll, Lavirotte and Pottier (1999) have recently reported that they are able to parse expres-

sions similar to ours within one second. Furthermore, our preview generation is currently performed by
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external tools, and takes eight to twelve seconds after the formula parsing has been completed.
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Figure 10: Character misrecognition and stroke misgrouping rates for each participant.

Since the character recogniser had not been trained for each participant, the number of misgrouped

strokes and misrecognised characters was quite high. Figure 10 shows the misgrouping and misrecog-

nition rates that occurred for each participant in the user testing. Misgrouping rates are given as a per-

centage of the total number of characters written by the eight participants; with an overall misgrouping

rate of 13%. The responses to the oral and written questions revealed that users were not bothered by the

rate of grouping errors. This is possibly because grouping errors are easy to detect, and correcting them

requires very little effort.

Characters that were misrecognised after the correct grouping was established were counted as mis-

recognitions. An overall recognition rate of 77% was achieved for the 583 characters entered by all the

test users. For a serious user of the system, taking the time to train the character recogniser is necessary.

Once properly trained, we have found that the character recogniser offers a recognition rate of over 95%.

Depending on the complexity of the formula the average number of calls to the parser before a

formula was interpreted correctly varied between one (ideal) and nine. Figure 11 summarises this data

for all participants. Expressions (1), (2) and (3) were usually parsed correctly on the first try. However,

four attempts were typically necessary for the more complex expressions. Parsing problems usually

occurred when many symbols appeared close together. If participants had been made aware of this fact,

it is likely they could have adapted their writing style to compensate.
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Figure 11: The number of parsing attempts made by the participants for each formula.

6.3 Comparative Results

Average times for relatively experienced users entering the five formulae into LATEX (three experts), Mi-

crosoft’s Equation Editor (three experts) and our system (one expert) are compared in table 1. Times are

measured in seconds.

The comparison at first seems very discouraging. However, if we exclude the time taken for parsing

and display, then our system is comparable in speed to the others, particularly for the more complex

expressions. We feel that this comparison is reasonable since we know that the parsing and preview

generation modules can be heavily optimised (Kosmala, Rigoll, Lavirotte and Pottier, 1999). We also

note that these figures only relate to equation entry using ours and other systems – not the editing of

previously entered formulae. We feel that the ease of editing the 2D structure of an expression and

allowing a completely arbitrary input order are among the greatest strengths of our approach.

Significantly, when asked to rate the style of interaction of our system used against other systems on

a scale of 0 (Worse) to 5 (Better), the answers were all at or above 3, with an average of 4.2.

7 Conclusions and Future Work

We have implemented and evaluated a system that allows the freehand entry and editing of mathematical

expressions using a pen and tablet. A pen-based approach provides a more natural interaction method

than command-string or template-based equation editors. When entering a formula using this system,

a user needn’t learn a special language or notation; more importantly, they do not need to determine
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Expression LATEX MS Equation Our System Our System

Editor Entry Only Total Time

1 3 5 7 16

2 6 11 12 25

3 14 23 21 31

4 14 18 26 41

5 23 35 28 41

Total time (s) 60 92 94 154

Table 1: A comparison of formula entry times by experts using LATEX, Microsoft’s Equation Editor, and

our system.

the overall structure of a formula before entering it. The user can avoid searching for special symbols

in menus, maneuvering the cursor into boxes in templates, or referring to manuals to find the correct

commands for the operations they wish to perform. Entering and editing formulae is much easier.

Our system is based on existing character recognition and formula parsing technologies. Our main

contribution is in combining these modules under a new user interface for pen-based equation editing.

The important features of this interface include new techniques for progressive grouping and unobtrusive

annotation of input strokes, and a simple gesture-based method for correcting grouping errors. Since

there will always be some ambiguity in handwritten input, simple methods for correcting errors such as

those we have presented will always be necessary.

Most people can type much faster than they can write. As noted by Kajler and Soiffer (1998), and

supported by Brown’s study (Brown, 1988), keyboards remain the most efficient device for purely textual

data input, even for self-taught typists. As a result, our system does not offer a fast alternative for

entering simple mathematical expressions, even for expert users. However, it is much more intuitive, less

complex, and easier to learn. Its strengths are in the entry of large, complex formulae, and the editing of

these formulae after entry.

The most important avenue for future work is the refinement and optimisation of the equation parsing

module. Faster and more reliable parsing techniques already exist in the literature, and these should be

pursued. We would also like to explore the possibility of parsing incomplete expressions, for use in

progressive interpretation.

Continued development of the character recogniser is also important. Although individual training of

the recogniser is not absolutely necessary, our user study showed that it is highly desirable. One simple

solution would be to make the individual training of the recogniser an incremental process, automati-

cally triggered every time the user operates in modify charactersmode. Since some notion of context is

essential to reliable interpretation, it is clear that the character recognition and formula parsing modules

should ultimately provide each other with mutual feedback.

We would also like to explore some smaller modifications to the interface. Switching between the
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four modes of the system proved to be a slight burden on participants in our user study. We would like to

look into ways of developing a more natural modeless system. We also would like to develop a feedback

mechanism that will help guide users to adjust their handwritten formula, in case it does not parse the

first time.

A fully featured version of our prototype pen-based formula entry system could be used as a front

end to symbolic manipulation or mathematics packages. A virtual piece of paper that not only records

writing, but also interprets it on demand and allows gesture-based algebraic manipulation could one day

be created. Our prototype system is a step in that direction.
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