
A Handwriting-Based Equation Editor

Steve Smithies

Department of Computer Science

University of Otago

Dunedin, New Zealand

smithies@cs.otago.ac.nz

Kevin Novins

Department of Computer Science

University of Otago

Dunedin, New Zealand

novins@cs.otago.ac.nz

James Arvo

Department of Computer Science

California Institute of Technology

Pasadena, CA 91125, USA

arvo@cs.caltech.edu

Abstract

Current equation editing systems rely on either text-

based equation description languages or on interactive

construction by means of structure templates and menus.

These systems are often tedious to use, even for experts,

because the user is forced to “parse” the expressions men-

tally before they are entered. This step is not normally

part of the process of writing equations on paper or on a

whiteboard. We describe a prototype equation editor that

is based on handwriting recognition and automatic equa-

tion parsing. It is coupled with a user interface that incor-

porates a set of simple procedures for correcting errors

made by the automatic interpretation. Although some

correction by the user is typically necessary before the

formula is recognized, we have found that the system is

simpler and more natural to use than systems based on

specialized languages or template-based interaction.

Key words: equation editing, equation parsing, handwrit-

ing recognition, human-computer interaction, pen-based

computing, pen-based input

1 Introduction

We describe a prototype equation editor that allows a user

to enter handwritten mathematical formulæ using a pen

and tablet. The system uses on-line character recogni-

tion software and a graph grammar to generate an internal

parse tree of the input, which can then be converted into

output representations such as LATEX, Mathematica, or a

LISP-like notation.

On-line character recognition and handwritten formula

parsing are notoriously difficult problems. Resolving am-

biguities in the input often requires the use of high-level

context [16]. Even humans will make occasional errors

interpreting handwritten equations. For this reason, an

essential part of any handwriting-based equation editor is

a facility for easy correction of input that has been incor-

rectly interpreted.

Our system is currently based on relatively simple

recognition and parsing modules. While these modules

frequently cause handwritten user input to be misinter-

preted, the resulting formula entry system nevertheless

quite natural and easy to use. Users of the system have

found it preferable to conventional equation editors, de-

spite the need to periodically correct recognition and in-

terpretation failures.

2 Previous Work

The earliest approaches to online mathematical formula

entry involved the use of specialized equation descrip-

tion languages. Using a LISP-like syntax, an entire

parse tree for a formula can be expressed in a linear,

text-based form [12]. Modern derivatives of this ap-

proach include Mathematica’s description language [20]

and LATEX’s math mode commands [9]. An advantage

of such a system is that keyboard entry is easy and fast.

Experts can use the syntax and keywords of these lan-

guages with relative ease, although the learning curve can

be quite steep. The main drawback of these linearized

languages is that the user must collapse the inherent two-

dimensional structure of a mathematical formula. The

user is forced to analyze the syntactic structure of the

equation in advance. In effect, the user performs a mental

“parse” of the equation before entry.

More recent commercial systems allow formula entry

using a structure editor that is based around a graphical

user interface [15, 20]. The user selects equation struc-

ture templates from pop up menus, and then fills in the

blanks with constants and variable names. This allows

the user to “see” the structure evolve in two dimensions.

However, the order in which structure templates are cho-

sen must be directed by the user’s understanding of the

global structure of the equation, and changing the struc-

ture, once imposed, can be extremely difficult. Further-

more, repeated searching of menus for templates and spe-

cial symbols coupled with the constant shifting between

mouse and keyboard can become quite tedious.

Given the relative ease with which users can write for-

mulæ on a piece of paper, a handwriting based system

seems a natural choice for an interface. Research in hand-

written formula recognition began in the 1960’s and is a

continuing area of study [11, 13, 16, 19]. Most systems



have focused on off-line processing of scanned input. A

notable exception is the work by Littin [11], which com-

bines an on-line character recognition system with a 2D

geometric extension of an LR parser. A drawback of Lit-

tin’s system is that the grammar requires that symbols be

drawn in a particular sequence. Littin’s claim that this or-

dering corresponds to the “natural” handwritten sequence

is probably justified in most cases. However, this con-

straint means that the editing of equations is restricted to

the modification of the last symbol drawn; thus, it is pri-

marily an equation entry system, as opposed to an equa-

tion editor.

3 The Recognition System

Any system for handwritten formula recognition must in-

corporate algorithms for recognizing handwritten sym-

bols and for formula parsing; moreover, to attain the

greatest accuracy, these processes must be coupled to

some degree. In this section we describe previous ap-

proaches to handwritten formula recognition, and then

describe the automatic methods that we employ in our

prototype system. Section 4 then describes the interac-

tive interface that we have built around these elements.

3.1 Character Recognition

At the lowest-level, recognition in our system is per-

formed at the level of symbols, which are encoded as col-

lections of polylines representing individual user-drawn

strokes. We employ an extremely fast user-trained on-line

recognition algorithm based on nearest-neighbor classifi-

cation in a feature space of approximately 50 dimensions.

Similar feature-based strategies were used by Rubine [17]

and Avitzur [2].

To train the system, the user supplies ten to twenty

hand-written samples of each character. These samples

are stored and used to produce both the classification

points in feature space and the symbol-dependent feature

weights, which are simply the standard deviations of the

features within each set of sample characters. Although

recognition is theoretically user-dependent, the system

is relatively user-independent in practice. For example,

even though all of our experiments were performed using

training samples supplied by two of the authors, others

had little difficulty in using the system. In part, this is

because the recognizer is many-to-one, meaning that the

system can recognize a variety of differing styles for each

character. This feature accommodates different users as

well as different styles employed by a single user.

Strategies for attaining higher recognition rates in-

clude the use of more versatile classifiers, such as neu-

ral nets [21], and perhaps even more importantly, the use

of context, as described by Miller and Viola [16] for ex-

ample. Virtually any recognition module could be incor-

porated into our system. The only fundamental require-

ments imposed by the system on the recognition module

is that it must be capable of ranking the k most likely

candidates for a single pattern by a numerical measure

of confidence, and that the confidence measures of dif-

ferent patterns must be directly comparable. The lat-

ter constraint arises from the stroke grouping algorithm,

which compares the confidence measures of many possi-

ble groupings.

3.2 Stroke Grouping

Our system for character recognition assumes that the

input strokes corresponding to a single character have

already been identified. Segmenting input strokes into

characters is not a trivial problem [21]. We have devel-

oped a simple progressive grouping algorithm that uses

the character recognizer as a tool for determining confi-

dences for different possible stroke groupings. Our algo-

rithm is described below.

We begin by assuming that the user completes the

strokes for each character before moving on to the next

one: for example, all i’s must be dotted and all t’s crossed

before the next letter or symbol is drawn. With this con-

straint, any set of N strokes has 2

N�1 possible stroke

groupings. Our system generates all possible groupings

for a small number of strokes and checks the confidence

level that the recognizer assigns to each possible group-

ing. The confidence level for a given group corresponds

to the confidence level of the worst character recognized

in each group, a heuristic that is often applied in expert

systems [18]. The group with the highest minimum con-

fidence level is ultimately chosen.

We limit the effects of exponential growth by observ-

ing that there is a small upper bound, k, on the number

of strokes in any character, which can be determined at

startup. With our current character training data, k = 4.

Thus, by analyzing the input progressively, we need only

group k strokes at a time. We then remove the first rec-

ognized character from the group and restart the process

when k strokes are again available to be analyzed.

When considering all combinations of k strokes, we

must also consider the possibility that the last l <

k strokes constitute a partial-formed character whose

recognition confidence should not be factored into the

grouping confidence. This doubles the number of com-

binations to consider. For k = 4, there are 16 combina-

tions, and these can be evaluated in less than 0:2 seconds

on a 180MHz Intel Pentium Pro machine. It is in this por-

tion of the process that a fast recognition algorithm, such

as nearest neighbor, is an advantage.

The performance of the automatic grouping algorithm

can be enhanced by reducing the number of combina-

tions to be analyzed. One fairly effective heuristic that



we employ is to assume that all intersecting strokes are

part of the same character. The drawback of this heuristic

is that hastily drawn characters will cause both group-

ing and recognition errors when they inadvertently cross.

However, these errors can be easily corrected by the user

when they occur.

The complete system works well for continuous input.

The system lags 2k strokes behind the user in its grouping

and recognition activity and does not interfere as the user

continues writing. The user can force the system to rec-

ognize all outstanding strokes by performing a single tap

on the drawing surface, or by waiting for a user-specified

system timeout, at which point the system assumes that

the user has finished writing.

This grouping algorithm cannot handle every possible

situation, and is limited by the strength of the underly-

ing character recognizer. However, its accuracy needn’t

be extremely high for it to be useful. Our interface,

described in Section 4.2, makes it easy to regroup the

strokes when necessary, and to correct errors made by

the character recognizer.

3.3 Equation Parsing

Since the early 1960’s algorithms for parsing scanned

documents and online handwritten input have been in-

vestigated for machine recognition of mathematical no-

tation. A review of the difficulties of processing hand-

written formulæ can be found in a recent paper by Miller

and Viola [16]. Approaches to parsing both typeset

and handwritten equations include syntactic approaches

[1, 7, 11, 13, 14, 22] and stochastic grammars [6, 16].

Our approach for parsing equations is based on the

graph rewriting method developed by Lavirotte and Pot-

tier [10], and by Blostein and Grbavec [3]. It works by

reducing a graph that encodes the formula to be parsed.

Labeled nodes in the graph initially represent symbols in

the formula, and later subexpressions of it. Labeled arcs

between nodes hold information on the nodes’ spatial re-

lationships such as “above” or “left-of”.

The parser works from a grammar that is defined with

a collection of graph templates. A search for these tem-

plates is performed on subgraphs of the input graph.

When one of the templates is found, a production rule

is fired, and the subgraph is collapsed to a single node, as

specified by the grammar. For example, a “2”, a “+” and a

“3” node, with appropriate spatial relationships, may be

replaced by a single subexpression node that represents

the sum “2+3”. During a successful parse, the graph gen-

erated by the input symbols is eventually collapsed down

to a single node.

As the graph is collapsed, a complete parse tree for the

expression can be constructed. The parse tree can then be

converted into any desired output format, such as a LISP-

like expression or LATEX notation. For efficiency, it is also

possible to generate the desired representation directly,

during the parsing phase.

Graph grammars are easily extended and can be made

somewhat tolerant of sloppy handwriting by setting ap-

propriate thresholds in determining the spatial relation-

ships between input characters.

The main drawbacks of a graph grammar approach are

the number and complexity of subgraph searches. The

running time increases as either the size of the grammar

or the input formula increases.

Our current implementation parses simple formulæ in

less than two seconds, though more complicated formulæ

may take twenty seconds or more. Optimizations such as

those described by Lavirotte and Pottier [10], Bunke and

Messmer [5], and by Miller and Viola [16] will be neces-

sary to improve system performance, especially when the

formula cannot be parsed successfully.

4 The Interface

We have developed a complete user interface for equation

editing on top of the recognition and parsing elements

described in the previous section. The interface allows

for handwritten input of mathematical formulæ, correc-

tion of automatic interpretation errors and basic equation

editing. Formulæ can be parsed and the results are auto-

matically passed to LATEX for viewing. Figure 1 shows a

screen capture from an actual interaction session. A for-

mula has been entered by the user and parsed by the sys-

tem, which presents the typeset result. The user is now

able to copy the LATEX code from the entry area at the

top of the preview window and insert it into their LATEX

document.

Each of the recognition elements described in Sec-

tion 3 could be improved by using contextual informa-

tion in making decisions. Using contextual informa-

tion has been a focus of research in formula recognition

[1, 10, 16]. However, even with such high level infor-

mation, perfect recognition is unlikely. Knowing this, we

designed an interface to simplify the task of correcting

interpretation errors. These correction methods are likely

to be useful even in systems with superior recognition and

parsing elements.

The system is designed with a pen and tablet in mind,

although input via a mouse or other pointing device is

also possible. All operations use at most one button ac-

tion. Typically, this is achieved by pressing the stylus

against the tablet.

The program has four modes of operation. Each mode

determines the way the system reacts to input strokes.

The remainder of this section discusses various parts of

our system, and how they work.



Figure 1: A formula entered into the system, with the LATEX generated for it.

4.1 Basic Input

Upon startup, the user is placed in draw mode. In this

mode, the user enters their formula by drawing the char-

acters with the pen on the drawing tablet. As the user

writes, the system automatically interprets the strokes al-

though there is a delay, as it must allow the user to get

at least eight strokes ahead. As each character is recog-

nized its bounding box is shaded and annotated with the

symbol that it most likely represents, as determined by

the recognizer.

Figure 2 shows a screen capture of the drawing area of

the program as a user is beginning to enter a formula. The

first three characters have been recognized by the system

and their bounding boxes are marked and annotated with

the system’s current character interpretation. As a char-

acter is recognized, the color of its strokes are changed to

indicate that the recognition has taken place.

The eight-stroke delay between input and recognition

means that recognition usually takes place some distance

away from the user’s current pen position. This lessens

the potential distraction caused by the appearance of the

system’s annotations.

When formula entry is complete, the system must

“catch up” in its recognition. There are currently several

ways to achieve this. First, after a brief timeout period

has elapsed, the system will automatically try to interpret

all pending strokes. Alternatively, the user can tap the

pen on the tablet or choose a menu option for the same

effect.

If a user wishes to change what they have drawn, they

may enter select and move mode at any time. In this

mode, they can select any subset of their original strokes

to delete or move them. Once elements have been repo-

sitioned, the resulting expression is re-parsed by the sys-

tem. This feature makes it easy to construct complex for-

mulæ in a natural order, as the user deals directly with

the two-dimensional layout of the equation, and needn’t

be concerned with the details of parsing.

4.2 Correcting Stroke Grouping Errors

The most basic mistake of automatic interpretation is the

misgrouping of strokes into characters. There are two

possible situations:

� Strokes that should be recognized as a single char-

acter are grouped as parts of separate characters, or

� Strokes that should be recognized as part of separate

characters are grouped into a common character.

The user can correct both types of error after entering

modify stroke groups mode. In this mode, drawing with

the pen produces temporary lines. Upon finishing a line,

all strokes that are touched by that line are forced into



Figure 2: A user beginning to enter a formula. The first

three characters have been recognized, and the remaining

two are still waiting to be recognized.

a group of their own, possibly causing a regrouping of

other strokes. The temporary line then disappears, and

the system automatically invokes the character recognizer

on all affected groups.

Figure 3 shows the modify stroke groups mode being

used to correct grouping errors. Figure 3(a) shows the

initial state, in which the strokes in the “=”, the “4” and

the “2” aren’t correctly grouped.

First, the user draws a line through the two strokes of

the “=” that should be combined into a single group, as

shown in Figure 3(b). Figure 3(c) shows the result after

the pen was lifted. Note that the temporary line has dis-

appeared and the “=” has now been correctly recognized.

To split the “4” and the “2” apart, the user draws a

line through one or more strokes that should be split off

from the larger group. In Figure 3(d), a line is drawn

through the two strokes of the “4”. A line through the

“2” would have had the same effect. Figure 3(e) shows

the final formula, with the strokes now correctly grouped

and recognized.

This method for regrouping the strokes is very easy to

learn. We have found that users consider the occasional

regrouping steps to be only a minor distraction. Presum-

ably, this is because grouping errors are easy to detect (in

part because of the bounding boxes drawn around strokes

that are grouped), and correcting them requires very little

effort.

4.3 Correcting Character Recognition Errors

In most cases, if the stroke grouping process succeeds,

the character recognition process also succeeds. This

is especially true if the character recognizer has been

trained on the user’s own handwriting. However, any

character recognition error that persist can be easily cor-

rected by entering modify characters mode.

When the system is in modify characters mode, click-

(a) Initial grouping.

(b) The user indicates that two strokes should be

grouped together.

(c) The system displays the regrouped and rerecognized

characters.

(d) The user indicates that two strokes should form their

own group.

(e) The final result.

Figure 3: Modifying stroke groupings.



ing on a group of strokes produces a pop up menu with

the most likely interpretations of the input strokes. The

interpretation can be corrected by selecting the appropri-

ate item from the menu. This is an effective strategy be-

cause the intended character is usually among the highest

ranked choices returned by the recognizer. If the correct

interpretation is not among those offered directly in the

pop up menu, the user may chose an enter option, and

type the correct character from the keyboard.

Figure 4 shows a user correcting a misrecognized char-

acter in modify character mode. The “z” that the user

drew was misrecognized as an “2”. By clicking on the

character a pop up menu appears and selecting the cor-

rect choice from this menu then overrides the recognizer.

Even though the pop up menu correction method is

easy and intuitive, users reported that the process of cor-

recting character interpretation errors was more burden-

some than correcting the grouping errors. Entering char-

acters from the keyboard was apparently most distracting,

as it usually required that the pen be put down first. High

character recognition rates are therefore very important,

and any serious user of the system must train the recog-

nizer on his or her own handwriting.

Figure 4: Correcting a misrecognized character.

4.4 Correcting Equation Parsing Errors

Ideally, the equation parser would be run in parallel with

the user input, in much the same way as our stroke group-

ing and character recognition algorithms. However, our

current parser is too slow for this purpose and it cannot

recognize incomplete formulæ. In our prototype inter-

face, equation parsing is a separate process that must be

explicitly invoked by the user. In a typical interaction ses-

sion, the user will draw a formula, correct any grouping

and recognition errors, and press a generate LATEX button

when the formula is in the desired form. After parsing the

formula, a LATEX preview is then generated using external

tools.

The graph grammar allows for some leniency in the

placement of characters, so it usually parses hand-entered

formulæ on its first attempt. Nonetheless, deviations

in placement from what the grammar expects can cause

parsing failures. In such a case, the user must manually

realign the input characters by using the select and move

mode described in Section 4.1.

5 Results

Our prototype system has been implemented in C++ and

runs on UNIX systems with the POSIX thread library.

The interface is written in Tcl/Tk.

We conducted a small user study that involved nine

participants. Each participant was given an introduction

to the system and then helped, if needed, as they entered

four practice formulæ. We then asked them to enter a set

of five test equations with no help. For comparison pur-

poses, a separate set of users were asked to enter the same

equations using other equation editors that they were al-

ready experienced with; typically Microsoft Word [15] or

LATEX [9].

The five formulæ that were entered by the users for the

unaided section are shown below. These formula are rep-

resentative of the complexity of formulæ that the current

underlying grammar can handle.

(1) x

2

+ 4

(2)

Z

x

2

+ 4dx

(3)

Z

2

0

x

2

+ 4

4

dx

(4)

9

X

z=0

z

3

+ 4z + 2

(5)

Z

8

3

(2

x

+ 4x)

�

p

z

dx = 8

Users gained proficiency in the data entry, correction

and editing steps with ease. All were able to enter the

formulæ in our test suite without further help.

Times for relatively experienced users entering the five

formulæ into LATEX, Microsoft’s Equation Editor (MSEE)

and our system (HBEE) are presented in the following

table. Times are measured in seconds. For comparison,

times for novice users of our system are shown as well.



Formula LATEX MSEE HBEE HBEE

Expert Expert Expert Novice

1 3 5 7 16

2 6 11 10 45

3 14 23 22 86

4 14 18 29 112

5 23 25 34 139

Total 60 82 102 399

The times shown for our system is the raw entry plus

time taken for corrections of the occasional grouping and

recognition errors. Time for parsing the formulae is not

included. It is important to note that the novice users of

the new system were not attempting to achieve fast entry

times. This data reflects the time of unhurried formula

entry, and is included here as a rough upper bound.

For equations that were near-linear in structure, enter-

ing straight LATEX or using a template-style equation ed-

itor, such as Microsoft’s Equation Editor [15], proved to

be faster than using our system. For more complex equa-

tions that needed to be “laid out” in 2D, entry time for

a user of our system was only marginally slower than

that of a relatively experienced user of more conventional

systems. In comparison to Microsoft’s Equation Editor,

users of our system found the entry of formulæ to be eas-

ier, and much less frustrating for editing.

The novices’ average times are much higher than those

of the experts, primarily due to character misrecognition

rates, which averaged 15%. Their unfamiliarity and ten-

tativeness with the pen and tablet interface, as well as

not having trained the character recognizer, were signif-

icant factors. The two novice users who had used a pen

and tablet before performed much better than the aver-

ages suggest.

The ease with which the input could be modified was

a strong point of the system. Unlike other formula entry

systems, whether they be template based or command-

string based, it is just as easy to make minor or major

changes to the contents and structure of the formula.

The times given above do not include parsing. In the

best case, our equation parser can parse a reasonably

sized formula in under two seconds. This is not fast

enough for a satisfactory real-time experience. In the

worst case, delays of tens of seconds can occur during

parsing. If a formula does not parse correctly the first

time, it becomes very frustrating. Efficiency and accu-

racy improvements to the parser are essential to future

development of the system. In spite of this, the parser

does cope well with the positional variations of handwrit-

ten input and almost all the test users’ formulæ could be

parsed.

This system does not offer a faster alternative to exist-

ing formula entry systems, even for expert users, but it is

much more comfortable and easier to use. Its strengths

are most apparent in the entry of large, complex, for-

mulæ, and in the editing of these formulæ after entry.

6 Conclusions and Future Work

We have presented complete working system for edit-

ing equations based on handwritten input. Although the

techniques currently used in the recognition steps are far

from perfect, our approach provides a more natural and

familiar interaction method than previous equation edi-

tors. When entering a formula using our system, a user

needn’t learn a special language or notation; more impor-

tantly, they needn’t parse the equations mentally before

entering them. Thus, users spend far less time searching

for special symbols in menus than in template-based ed-

itors. Finally, because our system allows the user to deal

directly with the spatial layout of formulæ, and not the

nodes of a parse tree, editing an existing formula is far

easier.

Our system is an interface overlaid on modules for

handwriting recognition, equation parsing, and typeset-

ting. The performance of the system, in terms of both

speed and accuracy, can be improved by improving the

performance of these elements. However, since there will

always be some ambiguity in handwritten input, simple

methods for correcting errors, such as the ones proposed

in this paper, will always be necessary.

The most important avenue for future research is in

providing the user with feedback when the equation

parser fails to understand the input. Without any clues

about which characters are misplaced, the user can get

stuck in a lengthy “formula debugging” loop.

We also would like to incorporate online training of

the handwriting recognition software. Corrections that

the user makes to incorrectly recognized characters pro-

vide valuable information, which should be added to the

training. With such an approach, the system would grad-

ually become more adept at recognizing an individual’s

writing style.

Since most users can type faster than they can write,

some formulæ will always be quicker to enter with a key-

board than with a pen. As commented by Kajler and Soif-

fer [8], and supported by Brown’s study [4], keyboards

remain the most efficient device for purely textual data

input. The ability to type as well as write formulæ will be

an option in future systems.

Ultimately, we would like to use the system as a front

end to symbolic manipulation and graphics packages.

We envision a virtual piece of paper that can not only

record writing, but also interpret it on demand, and al-

low gesture-based algebraic manipulation. Our prototype



system is a first step in this direction.

7 Acknowledgments

This work was supported in part by the NSF Science and

Technology Center for Computer Graphics and Scientific

Visualization, the Army Research Office Young Investi-

gator Program (DAAH04-96-100077), and the Alfred P.

Sloan Foundation.

8 References

[1] Robert H. Anderson. Syntax-directed recognition

of hand-printed two-dimensional mathematics. In

Melvin Klerer and Juris Reinfelds, editors, Interac-

tive Systems for Experimental Applied Mathemat-

ics, pages 436–459. Academic Press, New York,

1968.

[2] Ron Avitzur. Your own handprinting recognition

engine. Dr. Dobb’s Journal, pages 32–37, April

1992.

[3] Dorothea Blostein and Ann Grbavec. Recognition

of Mathematical Notation, chapter 22. World Sci-

entific Publishing Company, 1996.

[4] C. M. Brown. Comparison of typing and handwrit-

ing in “two-finger typists”. Proceedings 32nd An-

nual Meeting of the Human Factors Society, pages

381–385, 1988.

[5] Horst Bunke and Bruno T. Messmer. Recent ad-

vances in graph matching. International Journal

of Pattern Recognition and Artifical Intelligence,

11(1):169–203, 1997.

[6] P. A. Chou. Recognition of euqations using a two-

dimensional stochastic context-free grammar. Pro-

ceedings SPIE Visual Communications and Image

Processing IV, 1199:852–863, November 1989.

[7] Richard J. Fateman, Toku Tokuyasu, Benjamin P.

Berman, and Nicholas Mitchell. Optical charac-

ter recognition and parsing of typeset mathematics.

Journal of Visual Communication and Image Rep-

resentation, 7(1), March 1996.

[8] N. Kajler and N. Soiffer. A survey of user interfaces

for computer algebra systems. Journal Of Symbolic

Computation, 25(2):127–159, February 1998.

[9] Leslie Lamport. LATEX: A Document Preparation

System. Addison Wesley, 1994.

[10] Stéphane Lavirotte and Loı̈c Pottier. Optical for-

mula recognition. In Proceedings 4th International

Conference on Document Analysis and Recognition

(ICDAR), volume 1, pages 357–361, 1997.

[11] Richard Littin. Mathematical expression recogni-

tion: Parsing pen/tablet input in real-time using LR

techniques. Master’s thesis, University of Waikato,

March 1995.

[12] William A. Martin. Syntax and display of math-

ematical expressions. Technical Report AI Memo

85, MIT, July 1965.

[13] William A. Martin. A fast parsing scheme for hand-

printed mathematical expressions. Technical Report

AI Memo 145, MIT, October 1967.

[14] William A. Martin. Computer input/output of math-

ematical expressions. In Proceedings of Second

Symposium of Symbolic and Algebraic Manipula-

tion, pages 78–89, March 1971.

[15] Microsoft Corporation. Microsoft Word User’s

Guide, Version 6.0, 1993.

[16] Erik G. Miller and Paul A. Viola. Ambiguity and

constraint in mathematical expression recognition.

In Proceedings of the 15th National Conference

of Artificial Intelligence, pages 784–791, Madison,

Wisconsin, July 1998. American Association of Ar-

tificial Intelligence.

[17] Dean Rubine. Specifying gestures by example.

In SIGGRAPH ’91 Conference Proceedings, vol-

ume 25, July 1991.

[18] Efraim Turban. Expert Systems and Applied Ar-

tificial Intelligence, chapter 7, pages 254–256.

Macmillan Publishing company, 1992.

[19] H. J. Winkler, H. Fahrner, and M. Lang. A soft-

decision approach for structural analysis of hand-

written mathmatical expressions. In International

Conference on Acoustics, Speech and Signal Pro-

cessing, pages 2459–2462. IEEE, 1995.

[20] Stephen Wolfram. The Mathematica Book. Wol-

fram Media/Cambridge University Press, 3rd edi-

tion, 1996.

[21] L. S. Yaeger, B. J. Webb, and R. F. Lyon. Combin-

ing neural networks and context-driven search for

online, printed handwriting recognition in the New-

ton. AI Magazine, 19(1):73–89, Spring 1996.

[22] Yanjie Zhao, Tetsuya Sakurai, Hiroshi Sugiura, and

Tatsuo Torii. A methodology of parsing mathemati-

cal notation for mathematical computation. In Pro-

ceedings of the 1996 International Symposium on

Symbolic and Algebraic Computation, pages 292–

300. ACM Press, July 1996.


